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Abstract

The vast amount of research on theBoenzyme catalysed 1,2-bond shift reactions now provides strong evidence for the
conclusion that spin-spin coupled biradical intermediates. (HCo]) are responsible for the facile rearrangements involved
via m-complexed (charge—transfer complexed) half-reaction states. The biradical intermediates are also likely to be involved

in stereospecific [22] activation of the substrates. © 2000 Elsevier Science B.V. All rights reserved.
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1. Results and discussion

The cobalt—-alkyl complex, which is the central fea-
ture of vitamin B2 coenzyme, catalyses a remarkable
series of reactions whereby, (i) a paraffinic H atom
is abstracted from a substrate, i.e. af hgbridised
C-H bond is broken, (ii) a vicinal substituent X (OH,
NH», alkyl, COSCoA, etc.) undergoes a 1,2-bond
shift step, and (iii) an H atom is added back to the

malonyl-CoA to succinyl-CoA carbon skeleton re-
arrangement and subjected these to reactions using
cobalamin, By, or tin hydride reagents. Remarkably,
the G ring remained intact during the transformation
as shown in Scheme 2.

On the other hand, when the appropriate free radical
is deliberately generated, an extremely fast opening of
the G ring occurs (Scheme 3).

The authors conclude that free radicals per se are

new unsaturated carbon atom. This series of stepsnot responsible for the B catalysed transformation

is often attributed entirely to free radicals, the ini-

tial radical being formed by homolytic fission of the

[Co]l-CHxAd o bond, as shown in Scheme 1.
However, Scheme 1, as applied to the methyl

shown in Scheme 2, but when they considered the

other extreme, a covalently-bonded [Co]-alkyl in-

termediate, they were not very happy with it either.
Almost two decades ago, arising out of studies of the

malonate-CoA mutase system, has been thoroughlyrearrangement of the 2,2,6,6-tetramethylcyclohexyl

tested by Dowd et al. [1,2] who have provided pow-
erful evidence that it is seriously deficient. They

radical in the presence of1B, we suggested [3-6]
that a biradical intermediate is the key to both the

synthesised cyclopropane models for the methyl rearrangement step, and to that involving C-H acti-

* Corresponding author. Tel#44-28-9024-5133;
fax: +44-28-9038-2117.

vation in the substrate. This model radical probe was
chosen because the flanking gem dimethyl centers
frustrate the formation of a [Co]-cyclohexyl cova-
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lent o-bond. Furthermore, it allowed us to compare [Col-alkyl species. As we shall see, this resolves many
the behaviour of this saturated free radical in the of the paradoxes, found previously [1,2].

presence of the Co ion with that of other hydrocar-  Excellent EPR investigations [8] have shown that
byl radicals, neopentyl etc., which are known [7] to the Coion and the organic radical are weakly spin-spin

undergo 1,2-bond shift reactions inyHon the sur- coupled in the case of B ethanolamine deaminase
faces of noble metal catalysts, especially P50°C, cocatalysts, but strongly spin-spin coupled for the
Scheme 4. methylmalonyl-CoA mutase system [9,10].

This potential correspondence between the hetero- When the biradical concept is applied to the model
geneous and metallaenzyme fields of catalysis hasreactions shown in Schemes 2 and 3, it is obvious
been largely ignored, but recent work now greatly em- that spin-spin coupling will facilitate 1,2-bond shift
phasises the importance of the biradical concept as abut retard free radical mediated opening of thg C
subtle distinction between two extremes, namely, the ring [1,2]. The molecular orbitals of the appropriate
completely free radical and the covalendybonded half-reaction stater-complex make this obvious, as
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shown in Scheme 5, where2COSEt, Y=CO,Et, and the G ring (see Scheme 3). Now, the third electron
Z=(CHCH,CH)—Ph. has to move into an anti-bondingrp-orbital as the

A very important feature of the overall M.O. de- Cj ring is fissioned, so the initial spin coupling and
scription of thew-complex or charge transfer com- biradical character are no longer conducive to very fast
plex is the bonding interaction between ther*p reaction as found for the corresponding free radical
anti-bonding orbital of the organic moiety and the d  [1,2].
centered orbital of the Co—corrin complex. Similar  Another major advantage of the biradical character
interactions facilitate 1,2-bond shift in alkanes and of the key intermediate [3—6] is that it should facilitate
cycloalkanes in K on transition metal surfaces [7] [20+20] activation of the C—H bond in the substrate
(Scheme 4). (Scheme 7).

On the other hand, Scheme 6 shows that the spin Furthermore, [2-2] reactions of this type are of-
coupled biradical is in the wrong mode for opening of ten very stereospecific so the mechanism described in
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Scheme 7 may be the source of the very stereospecificpolymerization (ATRP) of olefins catalysed by metals

behaviour observed in{B coenzyme catalysis.

2. Conclusion

In conclusion, the spin-spin coupled biradical in-

termediate has the capacity to either move smoothly

into the pr-bonded half-reaction state for 1,2-bond
shift, or to engage in a [22] reaction with the sub-

strate, thereby affording more efficient and stereospe-

cific activation of the latter. In all of this, the Co ion

is always central to the catalytic action, and is not
merely a free radical generator. In any event, while
the complete extremes, totally free radical, or cova-
lent o-bonded [Co]—alkyl, may sometimes be present

in B12 systems and their models, such species may not

of themselves be conducive to efficient and selective
catalysis.
The idea of a biradical, or metal coupled free rad-

in lower oxidation states.
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